Ik had laatst contact met een internationale “thought leader” op het gebied van “tech ethics”. Hij vertelde mij dat hij heel dankbaar is voor het bestaan van de transparante laadpaal omdat het zo’n goed voorbeeld is van hoe design kan bijdragen aan eerlijke technologie.
Dat is natuurlijk ontzettend leuk om te horen. En het past in een bredere trend in de industrie gericht op het transparant en uitlegbaar maken van algoritmes. Inmiddels is het zelfs zo ver dat wetgeving uitlegbaarheid (in sommige gevallen) verplicht stelt.
In de documentaire hoor je meerdere mensen vertellen (mijzelf inbegrepen) waarom het belangrijk is dat stedelijke algoritmes transparant zijn. Thijs benoemt heel mooi twee redenen: Enerzijds het collectieve belang om democratische controle op de ontwikkeling van stedelijke algoritmes mogelijk te maken. Anderzijds is er het individuele belang om je recht te kunnen halen als een systeem een beslissing maakt waarmee je het (om wat voor reden dan ook) niet eens bent.
En inderdaad, in beide gevallen (collectieve controle en individuele remedie) is transparantie een randvoorwaarde. Ik denk dat we met dit project een hoop problemen qua design en techniek hebben opgelost die daarbij komen kijken. Tegelijkertijd doemt er een nieuwe vraag aan de horizon op: Als we begrijpen hoe een slim systeem werkt, en we zijn het er niet mee eens, wat dan? Hoe krijg je vervolgens daadwerkelijk invloed op de werking van het systeem?
Ik denk dat we onze focus zullen moeten gaan verleggen van transparantie naar wat ik tegenspraak of in goed Engels “contestability” noem.
Ontwerpen voor tegenspraak betekent dat we na moeten gaan denken over de middelen die mensen nodig hebben voor het uitoefenen van hun recht op menselijke interventie. Ja, dit betekent dat we informatie moeten aanleveren over het hoe en waarom van individuele beslissingen. Transparantie dus. Maar het betekent ook dat we nieuwe kanalen en processen moeten inrichten waarmee mensen verzoeken kunnen indienen voor het herzien van een beslissing. We zullen na moeten gaan denken over hoe we dergelijke verzoeken beoordelen, en hoe we er voor zorgen dat het slimme systeem in kwestie “leert” van de signalen die we op deze manier oppikken uit de samenleving.
Je zou kunnen zeggen dat ontwerpen van transparantie eenrichtingsverkeer is. Informatie stroomt van de ontwikkelende partij, naar de eindgebruiker. Bij het ontwerpen voor tegenspraak gaat het om het creëren van een dialoog tussen ontwikkelaars en burgers.
Ik zeg burgers want niet alleen klassieke eindgebruikers worden geraakt door slimme systemen. Allerlei andere groepen worden ook, vaak indirect beïnvloed.
Dat is ook een nieuwe ontwerp uitdaging. Hoe ontwerp je niet alleen voor de eindgebruiker (zoals bij de transparante laadpaal de EV bestuurder) maar ook voor zogenaamde indirecte belanghebbenden, bijvoorbeeld bewoners van straten waar laadpalen geplaatst worden, die geen EV rijden, of zelfs geen auto, maar evengoed een belang hebben bij hoe stoepen en straten worden ingericht.
Deze verbreding van het blikveld betekent dat we bij het ontwerpen voor tegenspraak nóg een stap verder kunnen en zelfs moeten gaan dan het mogelijk maken van remedie bij individuele beslissingen.
Want ontwerpen voor tegenspraak bij individuele beslissingen van een reeds uitgerold systeem is noodzakelijkerwijs post-hoc en reactief, en beperkt zich tot één enkele groep belanghebbenden.
Zoals Thijs ook min of meer benoemt in de documentaire beïnvloed slimme stedelijke infrastructuur de levens van ons allemaal, en je zou kunnen zeggen dat de design en technische keuzes die bij de ontwikkeling daarvan gemaakt worden intrinsiek ook politieke keuzes zijn.
Daarom denk ik dat we er niet omheen kunnen om het proces dat ten grondslag ligt aan deze systemen zelf, ook zo in te richten dat er ruimte is voor tegenspraak. In mijn ideale wereld is de ontwikkeling van een volgende generatie slimme laadpalen daarom participatief, pluriform en inclusief, net als onze democratie dat zelf ook streeft te zijn.
Hoe we dit soort “contestable” algoritmes precies vorm moeten geven, hoe ontwerpen voor tegenspraak moeten gaan werken, is een open vraag. Maar een aantal jaren geleden wist niemand nog hoe een transparante laadpaal er uit zou moeten zien, en dat hebben we ook voor elkaar gekregen.
Update (2021–03-31 16:43): Een opname van het gehele event is nu ook beschikbaar. Het bovenstaande betoog start rond 25:14.
Thijs Turèl of AMS Institute and myself presented a version of the talk below at the Cities for Digital Rights conference on June 19 in Amsterdam during the We Make the City festival. The talk is an attempt to articulate some of the ideas we both have been developing for some time around contestability in smart public infrastructure. As always with this sort of thing, this is intended as a conversation piece so I welcome any thoughts you may have.
The basic message of the talk is that when we start to do automated decision-making in public infrastructure using algorithmic systems, we need to design for the inevitable disagreements that may arise and furthermore, we suggest there is an opportunity to focus on designing for such disagreements in the physical objects that people encounter in urban space as they make use of infrastructure.
We set the scene by showing a number of examples of smart public infrastructure. A cyclist crossing that adapts to weather conditions. If it’s raining cyclists more frequently get a green light. A pedestrian crossing in Tilburg where elderly can use their mobile to get more time to cross. And finally, the case we are involved with ourselves: smart EV charging in the city of Amsterdam, about which more later.
We identify three trends in smart public infrastructure: (1) where previously algorithms were used to inform policy, now they are employed to perform automated decision-making on an individual case basis. This raises the stakes; (2) distributed ownership of these systems as the result of public-private partnerships and other complex collaboration schemes leads to unclear responsibility; and finally (3) the increasing use of machine learning leads to opaque decision-making.
These trends, and algorithmic systems more generally, raise a number of ethical concerns. They include but are not limited to: the use of inductive correlations (for example in the case of machine learning) leads to unjustified results; lack of access to and comprehension of a system’s inner workings produces opacity, which in turn leads to a lack of trust in the systems themselves and the organisations that use them; bias is introduced by a number of factors, including development team prejudices, technical flaws, bad data and unforeseen interactions with other systems; and finally the use of profiling, nudging and personalisation leads to diminished human agency. (We highly recommend the article by Mittelstadt et al. for a comprehensive overview of ethical concerns raised by algorithms.)
So for us, the question that emerges from all this is: How do we organise the supervision of smart public infrastructure in a democratic and lawful way?
There are a number of existing approaches to this question. These include legal and regulatory (e.g. the right to explanation in the GDPR); auditing (e.g. KPMG’s “AI in Control” method, BKZ’s transparantielab); procurement (e.g. open source clauses); insourcing (e.g. GOV.UK) and design and engineering (e.g. our own work on the transparent charging station).
We feel there are two important limitations with these existing approaches. The first is a focus on professionals and the second is a focus on prediction. We’ll discuss each in turn.
First of all, many solutions target a professional class, be it accountants, civil servants, supervisory boards, as well as technologists, designers and so on. But we feel there is a role for the citizen as well, because the supervision of these systems is simply too important to be left to a privileged few. This role would include identifying wrongdoing, and suggesting alternatives.
There is a tension here, which is that from the perspective of the public sector one should only ask citizens for their opinion when you have the intention and the resources to actually act on their suggestions. It can also be a challenge to identify legitimate concerns in the flood of feedback that can sometimes occur. From our point of view though, such concerns should not be used as an excuse to not engage the public. If citizen participation is considered necessary, the focus should be on freeing up resources and setting up structures that make it feasible and effective.
The second limitation is prediction. This is best illustrated with the Collinridge dilemma: in the early phases of new technology, when a technology and its social embedding are still malleable, there is uncertainty about the social effects of that technology. In later phases, social effects may be clear but then often the technology has become so well entrenched in society that it is hard to overcome negative social effects. (This summary is taken from an excellent van de Poel article on the ethics of experimental technology.)
Many solutions disregard the Collingridge dilemma and try to predict and prevent adverse effects of new systems at design-time. One example of this approach would be value-sensitive design. Our focus in stead is on use-time. Considering the fact that smart public infrastructure tends to be developed on an ongoing basis, the question becomes how to make citizens a partner in this process. And even more specifically we are interested in how this can be made part of the design of the “touchpoints” people actually encounter in the streets, as well as their backstage processes.
Why do we focus on these physical objects? Because this is where people actually meet the infrastructural systems, of which large parts recede from view. These are the places where they become aware of their presence. They are the proverbial tip of the iceberg.
The use of automated decision-making in infrastructure reduces people’s agency. For this reason, resources for agency need to be designed back into these systems. Frequently the answer to this question is premised on a transparency ideal. This may be a prerequisite for agency, but it is not sufficient. Transparency may help you become aware of what is going on, but it will not necessarily help you to act on that knowledge. This is why we propose a shift from transparency to contestability. (We can highly recommend Ananny and Crawford’s article for more on why transparency is insufficient.)
To clarify what we mean by contestability, consider the following three examples: When you see the lights on your router blink in the middle of the night when no-one in your household is using the internet you can act on this knowledge by yanking out the device’s power cord. You may never use the emergency brake in a train but its presence does give you a sense of control. And finally, the cash register receipt provides you with a view into both the procedure and the outcome of the supermarket checkout procedure and it offers a resource with which you can dispute them if something appears to be wrong.
None of these examples is a perfect illustration of contestability but they hint at something more than transparency, or perhaps even something wholly separate from it. We’ve been investigating what their equivalents would be in the context of smart public infrastructure.
To illustrate this point further let us come back to the smart EV charging project we mentioned earlier. In Amsterdam, public EV charging stations are becoming “smart” which in this case means they automatically adapt the speed of charging to a number of factors. These include grid capacity, and the availability of solar energy. Additional factors can be added in future, one of which under consideration is to give priority to shared cars over privately owned cars. We are involved with an ongoing effort to consider how such charging stations can be redesigned so that people understand what’s going on behind the scenes and can act on this understanding. The motivation for this is that if not designed carefully, the opacity of smart EV charging infrastructure may be detrimental to social acceptance of the technology. (A first outcome of these efforts is the Transparent Charging Station designed by The Incredible Machine. A follow-up project is ongoing.)
We have identified a number of different ways in which people may object to smart EV charging. They are listed in the table below. These types of objections can lead us to feature requirements for making the system contestable.
Because the list is preliminary, we asked the audience if they could imagine additional objections, if those examples represented new categories, and if they would require additional features for people to be able to act on them. One particularly interesting suggestion that emerged was to give local communities control over the policies enacted by the charge points in their vicinity. That’s something to further consider the implications of.
And that’s where we left it. So to summarise:
Algorithmic systems are becoming part of public infrastructure.
Smart public infrastructure raises new ethical concerns.
Many solutions to ethical concerns are premised on a transparency ideal, but do not address the issue of diminished agency.
There are different categories of objections people may have to an algorithmic system’s workings.
Making a system contestable means creating resources for people to object, opening up a space for the exploration of meaningful alternatives to its current implementation.