PhD update – January 2022

It has been three years since I last wrote an update on my PhD. I guess anoth­er post is in order. 

My PhD plan was for­mal­ly green-lit in Octo­ber 2019. I am now over three years into this thing. There are rough­ly two more years left on the clock. I update my plans on a rolling basis. By my lat­est esti­ma­tion, I should be ready to request a date for my defense in May 2023. 

Of course, the pan­dem­ic forced me to adjust course. I am lucky enough not to be locked into par­tic­u­lar meth­ods or cas­es that are fun­da­men­tal­ly incom­pat­i­ble with our cur­rent predica­ment. But still, I had to change up my meth­ods, and recon­sid­er the sequenc­ing of my planned studies. 

The con­fer­ence paper I men­tioned in the pre­vi­ous update, using the MX3D bridge to explore smart cities’ log­ic of con­trol and city­ness, was reject­ed by DIS. I per­formed a rewrite, but then came to the con­clu­sion it was kind of a false start. These kinds of things are all in the game, of course.

The sec­ond paper I wrote uses the Trans­par­ent Charg­ing Sta­tion to inves­ti­gate how notions of trans­par­ent AI dif­fer between experts and cit­i­zens. It was final­ly accept­ed late last year and should see pub­li­ca­tion in AI & Soci­ety soon. It is titled Ten­sions in Trans­par­ent Urban AI: Design­ing A Smart Elec­tric Vehi­cle Charge Point. This piece went through mul­ti­ple major revi­sions and was pre­vi­ous­ly reject­ed by DIS and CHI.

A third paper, Con­testable AI by Design: Towards A Frame­work, uses a sys­tem­at­ic lit­er­a­ture review of AI con­testa­bil­i­ty to con­struct a pre­lim­i­nary design frame­work, is cur­rent­ly under review at a major phi­los­o­phy of tech­nol­o­gy jour­nal. Fin­gers crossed.

And cur­rent­ly, I am work­ing on my fourth pub­li­ca­tion, tan­gen­tial­ly titled Con­testable Cam­era Cars: A Spec­u­la­tive Design Explo­ration of Pub­lic AI Sys­tems Respon­sive to Val­ue Change, which will be based on empir­i­cal work that uses spec­u­la­tive design as a way to devel­op guide­lines and exam­ples for the afore­men­tioned design frame­work, and to inves­ti­gate civ­il ser­vants’ views on the path­ways towards con­testable AI sys­tems in pub­lic administration.

Once that one is done, I intend to do one more study, prob­a­bly look­ing into mon­i­tor­ing and trace­abil­i­ty as poten­tial lever­age points for con­testa­bil­i­ty, after which I will turn my atten­tion to com­plet­ing my thesis. 

Aside from my research, in 2021 was allowed to devel­op and teach a mas­ter elec­tive cen­tered around my PhD top­ic, titled AI & Soci­ety. In it, stu­dents are equipped with tech­ni­cal knowl­edge of AI, and tools for think­ing about AI ethics. They apply these to a design stu­dio project focused on con­cep­tu­al­iz­ing a respon­si­ble AI-enabled ser­vice that address­es a social issue the city of Ams­ter­dam might con­ceiv­ably strug­gle with. Stu­dents also write a brief paper reflect­ing on and cri­tiquing their group design work. You can see me on Vimeo do a brief video intro­duc­tion for stu­dents who are con­sid­er­ing the course. I will be run­ning the course again this year start­ing end of February.

I also men­tored a num­ber of bril­liant mas­ter grad­u­a­tion stu­dents: Xueyao Wang (with Jacky Bour­geois as chair) Jooy­oung Park, Loes Sloet­jes (both with Roy Ben­dor as chair) and cur­rent­ly Fabi­an Geis­er (with Euiy­oung Kim as chair). Work­ing with stu­dents is one of the best parts of being in academia.

All of the above would not have been pos­si­ble with­out the great sup­port from my super­vi­so­ry team: Ianus Keller, Neelke Doorn and Gerd Kortuem. I should also give spe­cial men­tion to Thi­js Turel at AMS Institute’s Respon­si­ble Sens­ing Lab, where most of my empir­i­cal work is situated.

If you want to dig a lit­tle deep­er into some of this, I recent­ly set up a web­site for my PhD project over at contestable.ai.

Contestable Infrastructures: Designing for Dissent in Smart Public Objects” at We Make the City 2019

Thi­js Turèl of AMS Insti­tute and myself pre­sent­ed a ver­sion of the talk below at the Cities for Dig­i­tal Rights con­fer­ence on June 19 in Ams­ter­dam dur­ing the We Make the City fes­ti­val. The talk is an attempt to artic­u­late some of the ideas we both have been devel­op­ing for some time around con­testa­bil­i­ty in smart pub­lic infra­struc­ture. As always with this sort of thing, this is intend­ed as a con­ver­sa­tion piece so I wel­come any thoughts you may have.


The basic mes­sage of the talk is that when we start to do auto­mat­ed deci­sion-mak­ing in pub­lic infra­struc­ture using algo­rith­mic sys­tems, we need to design for the inevitable dis­agree­ments that may arise and fur­ther­more, we sug­gest there is an oppor­tu­ni­ty to focus on design­ing for such dis­agree­ments in the phys­i­cal objects that peo­ple encounter in urban space as they make use of infrastructure.

We set the scene by show­ing a num­ber of exam­ples of smart pub­lic infra­struc­ture. A cyclist cross­ing that adapts to weath­er con­di­tions. If it’s rain­ing cyclists more fre­quent­ly get a green light. A pedes­tri­an cross­ing in Tilburg where elder­ly can use their mobile to get more time to cross. And final­ly, the case we are involved with our­selves: smart EV charg­ing in the city of Ams­ter­dam, about which more later.

Image cred­its: Vat­ten­fall, Fietsfan010, De Nieuwe Draai

We iden­ti­fy three trends in smart pub­lic infra­struc­ture: (1) where pre­vi­ous­ly algo­rithms were used to inform pol­i­cy, now they are employed to per­form auto­mat­ed deci­sion-mak­ing on an indi­vid­ual case basis. This rais­es the stakes; (2) dis­trib­uted own­er­ship of these sys­tems as the result of pub­lic-pri­vate part­ner­ships and oth­er com­plex col­lab­o­ra­tion schemes leads to unclear respon­si­bil­i­ty; and final­ly (3) the increas­ing use of machine learn­ing leads to opaque decision-making.

These trends, and algo­rith­mic sys­tems more gen­er­al­ly, raise a num­ber of eth­i­cal con­cerns. They include but are not lim­it­ed to: the use of induc­tive cor­re­la­tions (for exam­ple in the case of machine learn­ing) leads to unjus­ti­fied results; lack of access to and com­pre­hen­sion of a system’s inner work­ings pro­duces opac­i­ty, which in turn leads to a lack of trust in the sys­tems them­selves and the organ­i­sa­tions that use them; bias is intro­duced by a num­ber of fac­tors, includ­ing devel­op­ment team prej­u­dices, tech­ni­cal flaws, bad data and unfore­seen inter­ac­tions with oth­er sys­tems; and final­ly the use of pro­fil­ing, nudg­ing and per­son­al­i­sa­tion leads to dimin­ished human agency. (We high­ly rec­om­mend the arti­cle by Mit­tel­stadt et al. for a com­pre­hen­sive overview of eth­i­cal con­cerns raised by algorithms.)

So for us, the ques­tion that emerges from all this is: How do we organ­ise the super­vi­sion of smart pub­lic infra­struc­ture in a demo­c­ra­t­ic and law­ful way?

There are a num­ber of exist­ing approach­es to this ques­tion. These include legal and reg­u­la­to­ry (e.g. the right to expla­na­tion in the GDPR); audit­ing (e.g. KPMG’s AI in Con­trol” method, BKZ’s transparantielab); pro­cure­ment (e.g. open source claus­es); insourc­ing (e.g. GOV.UK) and design and engi­neer­ing (e.g. our own work on the trans­par­ent charg­ing sta­tion).

We feel there are two impor­tant lim­i­ta­tions with these exist­ing approach­es. The first is a focus on pro­fes­sion­als and the sec­ond is a focus on pre­dic­tion. We’ll dis­cuss each in turn.

Image cred­its: Cities Today

First of all, many solu­tions tar­get a pro­fes­sion­al class, be it accoun­tants, civ­il ser­vants, super­vi­so­ry boards, as well as tech­nol­o­gists, design­ers and so on. But we feel there is a role for the cit­i­zen as well, because the super­vi­sion of these sys­tems is sim­ply too impor­tant to be left to a priv­i­leged few. This role would include iden­ti­fy­ing wrong­do­ing, and sug­gest­ing alternatives. 

There is a ten­sion here, which is that from the per­spec­tive of the pub­lic sec­tor one should only ask cit­i­zens for their opin­ion when you have the inten­tion and the resources to actu­al­ly act on their sug­ges­tions. It can also be a chal­lenge to iden­ti­fy legit­i­mate con­cerns in the flood of feed­back that can some­times occur. From our point of view though, such con­cerns should not be used as an excuse to not engage the pub­lic. If cit­i­zen par­tic­i­pa­tion is con­sid­ered nec­es­sary, the focus should be on free­ing up resources and set­ting up struc­tures that make it fea­si­ble and effective.

The sec­ond lim­i­ta­tion is pre­dic­tion. This is best illus­trat­ed with the Collinridge dilem­ma: in the ear­ly phas­es of new tech­nol­o­gy, when a tech­nol­o­gy and its social embed­ding are still mal­leable, there is uncer­tain­ty about the social effects of that tech­nol­o­gy. In lat­er phas­es, social effects may be clear but then often the tech­nol­o­gy has become so well entrenched in soci­ety that it is hard to over­come neg­a­tive social effects. (This sum­ma­ry is tak­en from an excel­lent van de Poel arti­cle on the ethics of exper­i­men­tal technology.) 

Many solu­tions dis­re­gard the Collingridge dilem­ma and try to pre­dict and pre­vent adverse effects of new sys­tems at design-time. One exam­ple of this approach would be val­ue-sen­si­tive design. Our focus in stead is on use-time. Con­sid­er­ing the fact that smart pub­lic infra­struc­ture tends to be devel­oped on an ongo­ing basis, the ques­tion becomes how to make cit­i­zens a part­ner in this process. And even more specif­i­cal­ly we are inter­est­ed in how this can be made part of the design of the “touch­points” peo­ple actu­al­ly encounter in the streets, as well as their back­stage processes.

Why do we focus on these phys­i­cal objects? Because this is where peo­ple actu­al­ly meet the infra­struc­tur­al sys­tems, of which large parts recede from view. These are the places where they become aware of their pres­ence. They are the prover­bial tip of the iceberg. 

Image cred­its: Sagar Dani

The use of auto­mat­ed deci­sion-mak­ing in infra­struc­ture reduces people’s agency. For this rea­son, resources for agency need to be designed back into these sys­tems. Fre­quent­ly the answer to this ques­tion is premised on a trans­paren­cy ide­al. This may be a pre­req­ui­site for agency, but it is not suf­fi­cient. Trans­paren­cy may help you become aware of what is going on, but it will not nec­es­sar­i­ly help you to act on that knowl­edge. This is why we pro­pose a shift from trans­paren­cy to con­testa­bil­i­ty. (We can high­ly rec­om­mend Anan­ny and Crawford’s arti­cle for more on why trans­paren­cy is insufficient.)

To clar­i­fy what we mean by con­testa­bil­i­ty, con­sid­er the fol­low­ing three exam­ples: When you see the lights on your router blink in the mid­dle of the night when no-one in your house­hold is using the inter­net you can act on this knowl­edge by yank­ing out the device’s pow­er cord. You may nev­er use the emer­gency brake in a train but its pres­ence does give you a sense of con­trol. And final­ly, the cash reg­is­ter receipt pro­vides you with a view into both the pro­ce­dure and the out­come of the super­mar­ket check­out pro­ce­dure and it offers a resource with which you can dis­pute them if some­thing appears to be wrong.

Image cred­its: Aangifte­doen, source unknown for remainder

None of these exam­ples is a per­fect illus­tra­tion of con­testa­bil­i­ty but they hint at some­thing more than trans­paren­cy, or per­haps even some­thing whol­ly sep­a­rate from it. We’ve been inves­ti­gat­ing what their equiv­a­lents would be in the con­text of smart pub­lic infrastructure.

To illus­trate this point fur­ther let us come back to the smart EV charg­ing project we men­tioned ear­li­er. In Ams­ter­dam, pub­lic EV charg­ing sta­tions are becom­ing “smart” which in this case means they auto­mat­i­cal­ly adapt the speed of charg­ing to a num­ber of fac­tors. These include grid capac­i­ty, and the avail­abil­i­ty of solar ener­gy. Addi­tion­al fac­tors can be added in future, one of which under con­sid­er­a­tion is to give pri­or­i­ty to shared cars over pri­vate­ly owned cars. We are involved with an ongo­ing effort to con­sid­er how such charg­ing sta­tions can be redesigned so that peo­ple under­stand what’s going on behind the scenes and can act on this under­stand­ing. The moti­va­tion for this is that if not designed care­ful­ly, the opac­i­ty of smart EV charg­ing infra­struc­ture may be detri­men­tal to social accep­tance of the tech­nol­o­gy. (A first out­come of these efforts is the Trans­par­ent Charg­ing Sta­tion designed by The Incred­i­ble Machine. A fol­low-up project is ongoing.)

Image cred­its: The Incred­i­ble Machine, Kars Alfrink

We have iden­ti­fied a num­ber of dif­fer­ent ways in which peo­ple may object to smart EV charg­ing. They are list­ed in the table below. These types of objec­tions can lead us to fea­ture require­ments for mak­ing the sys­tem contestable. 

Because the list is pre­lim­i­nary, we asked the audi­ence if they could imag­ine addi­tion­al objec­tions, if those exam­ples rep­re­sent­ed new cat­e­gories, and if they would require addi­tion­al fea­tures for peo­ple to be able to act on them. One par­tic­u­lar­ly inter­est­ing sug­ges­tion that emerged was to give local com­mu­ni­ties con­trol over the poli­cies enact­ed by the charge points in their vicin­i­ty. That’s some­thing to fur­ther con­sid­er the impli­ca­tions of.

And that’s where we left it. So to summarise: 

  1. Algo­rith­mic sys­tems are becom­ing part of pub­lic infrastructure.
  2. Smart pub­lic infra­struc­ture rais­es new eth­i­cal concerns.
  3. Many solu­tions to eth­i­cal con­cerns are premised on a trans­paren­cy ide­al, but do not address the issue of dimin­ished agency.
  4. There are dif­fer­ent cat­e­gories of objec­tions peo­ple may have to an algo­rith­mic system’s workings.
  5. Mak­ing a sys­tem con­testable means cre­at­ing resources for peo­ple to object, open­ing up a space for the explo­ration of mean­ing­ful alter­na­tives to its cur­rent implementation.