In the first half of this year, I’ve presented several versions of a brief talk on participatory AI. I figured I would post an amalgam of these to the blog for future reference. (Previously, on the blog, I posted a brief lit review on the same topic; this talk builds on that.)
So, to start, the main point of this talk is that many participatory approaches to AI don’t engage deeply with the specifics of the technology. One such specific is the translation work engineers do to make a problem “learnable” by a machine (Kang, 2023). From this perspective, the main question to ask becomes, how does translation happen in our specific projects? Should citizens be involved in this translation work? If so, how to achieve this?
Before we dig into the state of participatory AI, let’s begin by clarifying why we might want to enable participation in the first place. A common motivation is a lack of democratic control over AI systems. (This is particularly concerning when AI systems are used for government policy execution. These are the systems I mostly look at in my own research.) And so the response is to bring the people into the development process, and to let them co-decide matters.
In these cases, participation can be understood as an enabler of democratic agency, i.e., a way for subjects to legitimate the use of AI systems (cf. Peter, 2020 in Rubel et al., 2021). Peter distinguishes two pathways: a normative one and a democratic one. Participation can be seen as an example of the democratic pathway to legitimation. A crucial detail Peter mentions here, which is often overlooked in participatory AI literature, is that normative constraints must limit the democratic pathway to avoid arbitrariness.
So, what is the state of participatory AI research and practice? I will look at each in turn next.
As mentioned, I previously posted on the state of participatory AI research, so I won’t repeat that in full here. (For the record, I reviewed Birhane et al. (2022), Bratteteig & Verne (2018), Delgado et al. (2023), Ehsan & Riedl (2020), Feffer et al. (2023), Gerdes (2022), Groves et al. (2023), Robertson et al. (2023), Sloane et al. (2020), and Zytko et al. (2022).) Elements that jump out include:
- Superficial and unrepresentative involvement.
- Piecemeal approaches that have minimal impact on decision-making.
- Participants with a consultative role rather than that of active decision-makers.
- A lack of bridge-builders between stakeholder perspectives.
- Participation washing and exploitative community involvement.
- Struggles with the dynamic nature of technology over time.
- Discrepancies between the time scales for users to evaluate design ideas versus the pace at which systems are developed.
- A demand for participation to enhance community knowledge and to actually empower them.
Taking a step back, if I were to evaluate the state of the scientific literature on participatory AI, it strikes me that many of these issues are not new to AI. They have been present in participatory design more broadly for some time already. Many of these issues are also not necessarily specific to AI. The ones I would call out include the issues related to AI system dynamism, time scales of participation versus development, and knowledge gaps between various actors in participatory processes (and, relatedly, the lack of bridge-builders).
So, what about practice? Let’s look at two reports that I feel are a good representation of the broader field: Framework for Meaningful Stakeholder Involvement by ECNL & SocietyInside, and Democratizing AI: Principles for Meaningful Public Participation by Data & Society.
Framework for Meaningful Stakeholder Involvement is aimed at businesses, organizations, and institutions that use AI. It focuses on human rights, ethical assessment, and compliance. It aims to be a tool for planning, delivering, and evaluating stakeholder engagement effectively, emphasizing three core elements: Shared Purpose, Trustworthy Process, and Visible Impact.
Democratizing AI frames public participation in AI development as a way to add legitimacy and accountability and to help prevent harmful impacts. It outlines risks associated with AI, including biased outcomes, opaque decision-making processes, and designers lacking real-world impact awareness. Causes for ineffective participation include unidirectional communication, socioeconomic barriers, superficial engagement, and ineffective third-party involvement. The report uses environmental law as a reference point and offers eight guidelines for meaningful public participation in AI.
Taking stock of these reports, we can say that the building blocks for the overall process are available to those seriously looking. The challenges facing participatory AI are, on the one hand, economic and political. On the other hand, they are related to the specifics of the technology at hand. For the remainder of this piece, let’s dig into the latter a bit more.
Let’s focus on translation work done by engineers during model development.
For this, I build on work by Kang (2023), which focuses on the qualitative analysis of how phenomena are translated into ML-compatible forms, paying specific attention to the ontological translations that occur in making a problem learnable. Translation in ML means transforming complex qualitative phenomena into quantifiable and computable forms. Multifaceted problems are converted into a “usable quantitative reference” or “ground truth.” This translation is not a mere representation of reality but a reformulation of a problem into mathematical terms, making it understandable and processable by ML algorithms. This transformation involves a significant amount of “ontological dissonance,” as it mediates and often simplifies the complexity of real-world phenomena into a taxonomy or set of classes for ML prediction. The process of translating is based on assumptions and standards that may alter the nature of the ML task and introduce new social and technical problems.
So what? I propose we can use the notion of translation as a frame for ML engineering. Understanding ML model engineering as translation is a potentially useful way to analyze what happens at each step of the process: What gets selected for translation, how the translation is performed, and what the resulting translation consists of.
So, if we seek to make participatory AI engage more with the technical particularities of ML, we could begin by identifying translations that have happened or might happen in our projects. We could then ask to what extent these acts of translation are value-laden. For those that are, we could think about how to communicate these translations to a lay audience. A particular challenge I expect we will be faced with is what the meaningful level of abstraction for citizen participation during AI development is. We should also ask what the appropriate ‘vehicle’ for citizen participation will be. And we should seek to move beyond small-scale, one-off, often unrepresentative forms of direct participation.
Bibliography
- Birhane, A., Isaac, W., Prabhakaran, V., Diaz, M., Elish, M. C., Gabriel, I., & Mohamed, S. (2022). Power to the People? Opportunities and Challenges for Participatory AI. Equity and Access in Algorithms, Mechanisms, and Optimization, 1–8. https://doi.org/10/grnj99
- Bratteteig, T., & Verne, G. (2018). Does AI make PD obsolete?: Exploring challenges from artificial intelligence to participatory design. Proceedings of the 15th Participatory Design Conference: Short Papers, Situated Actions, Workshops and Tutorial — Volume 2, 1–5. https://doi.org/10/ghsn84
- Delgado, F., Yang, S., Madaio, M., & Yang, Q. (2023). The Participatory Turn in AI Design: Theoretical Foundations and the Current State of Practice. Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, 1–23. https://doi.org/10/gs8kvm
- Ehsan, U., & Riedl, M. O. (2020). Human-Centered Explainable AI: Towards a Reflective Sociotechnical Approach. In C. Stephanidis, M. Kurosu, H. Degen, & L. Reinerman-Jones (Eds.), HCI International 2020—Late Breaking Papers: Multimodality and Intelligence (pp. 449–466). Springer International Publishing. https://doi.org/10/gskmgf
- Feffer, M., Skirpan, M., Lipton, Z., & Heidari, H. (2023). From Preference Elicitation to Participatory ML: A Critical Survey & Guidelines for Future Research. Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 38–48. https://doi.org/10/gs8kvx
- Gerdes, A. (2022). A participatory data-centric approach to AI Ethics by Design. Applied Artificial Intelligence, 36(1), 2009222. https://doi.org/10/gs8kt4
- Groves, L., Peppin, A., Strait, A., & Brennan, J. (2023). Going public: The role of public participation approaches in commercial AI labs. Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 1162–1173. https://doi.org/10/gs8kvs
- Kang, E. B. (2023). Ground truth tracings (GTT): On the epistemic limits of machine learning. Big Data & Society, 10(1), 1–12. https://doi.org/10/gtfgvx
- Peter, F. (2020). The Grounds of Political Legitimacy. Journal of the American Philosophical Association, 6(3), 372–390. https://doi.org/10/grqfhn
- Robertson, S., Nguyen, T., Hu, C., Albiston, C., Nikzad, A., & Salehi, N. (2023). Expressiveness, Cost, and Collectivism: How the Design of Preference Languages Shapes Participation in Algorithmic Decision-Making. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10/gr6q2t
- Rubel, A., Castro, C., & Pham, A. K. (2021). Algorithms and autonomy: The ethics of automated decision systems. Cambridge University Press.
- Sloane, M., Moss, E., Awomolo, O., & Forlano, L. (2020). Participation is not a Design Fix for Machine Learning. arXiv:2007.02423 [Cs]. http://arxiv.org/abs/2007.02423
- Zytko, D., J. Wisniewski, P., Guha, S., P. S. Baumer, E., & Lee, M. K. (2022). Participatory Design of AI Systems: Opportunities and Challenges Across Diverse Users, Relationships, and Application Domains. Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, 1–4. https://doi.org/10/gs8kv6